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1. INTRODUCTION AND RESULTS

If Fis a real-valued function on the interval I = [0, 1], the nth Bernstein
polynomial B, (F) of Fis

BUF, ) = 3 FIn) pual),
where

sl = (1) ¥4 —

A modification of the Bernstein polynomials due to Kantorovi¢ [4]
makes it possible to approximate functions f'e L(I) (L,(]) is the linear space
of real-valued Lebesgue integrable functions with the usual L; norm) by
polynomials, namely by

(k+1) /(n-+1)

Pfsx) =1+ D) Y. past®) | f@yd.
k=0 k/(n+1)
Let F denote the indefinite integral ﬁf f(¢) dt. Then
d
A BuaF, 2) = Pu(f, %) M

and thus
vatto) BaaalF, ) — FO) = | I Pufs %) ~ F(0)] dx.

For fe L,(I) Lorentz [5] proved in his dissertation that

f: | Po(f, %) — () dx — 0 (n— o0).

* This paper is part of the author’s dissertation.
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He also obtained there the following result where AC(7) denotes the class
of real-valued absolutely continuous functions on /.

TuroreMm 1. Fe AC(1) if and onlv if
l.iznﬁ varyy )(Bu(F, 1) — F(1) = 0.

The following quantitative version of one part of Lorentz’ result is due
to Hoeffding [3].

THEOREM 2. If F is the difference of two convex absolutely continuous
Sunctions on I and J(F') = ﬁ X2(1 — x)\2 | df (x)| is finite, then

varp (1(Bu(F, ) — F(-)) = O(n=1/2).

Hoeffding obtained Theorem 2 as a corollary to the following

THEOREM 3. If f is a Lebesgue integrable function of bounded variation
inside (0, 1), then

[1Pu2) 100 d < @iy J(fy ne,

where J(f) = J(F") (see Theorem 2).

Inverse theorems and a “local”” version of the saturation are due to Ditzian
and May [1].

In this paper we deal with the “global’” version of the saturation. We
determine the saturation class of the Kantorovi¢ operator and of the Bernstein
polynomials in the L, norm and in the variation, respectively. Let us denote
by BV(J) the class of functions of bounded variation on I. Then our result is

THEOREM 4. For fe L(I) and F(x) = [,f(t)dt the following two
statements are equivalent:
@ vt (BuulF, ) — FO) = [, | Pu(fy x) — f(x)} dx = O(n),
(i) FeAC)andF' = f, f€S,

S ff) =k o+ L 7(—]”—(27)(/1, £e(0, 1), ke R and h e BV(I),
h(0) = h(1) = 0! .

Moreover, if ’
(i) varg1(Baia(F, ) — F()) = [o | Pul(f; X) — FR)] dx = o(™),

then f is constant a.e.
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2. SoME LEMMAS

The proof of Theorem 4 is based on three lemmas. But first we will give
an often used equality. A simple calculation shows that expressed in terms

of the B-function
1 1
fo PrifX) dx = jo (Z) xF(L — x)rF dx
n 1
LemMa 1. If x €0, 1] then, for S, = ¥ Vi keN, and Sy = 0, we get

lﬁ\”)"

Y (Sn = S0 Pus() = Z 4= neN.
k=0
Proof. We have
k 1 A~1 .1 i llﬂfk
= - = tdf = —2-dE,
iz=1 igo J0 f f ‘fo 1 _"‘f f
and it follows that
1 fk . ‘fn
Sp = Si= | g

Hence

(Sy — Si) pur(x) = J'Ol a — x)ltng)n — ¢ "

N él (= fol £ (1 — &yt dE.

M=

k

I

Applying (2) in a modified form we obtain the result of Lemma 1.

LEMMA 2. If 0 < x < 1, then
f' | P(In, x) — Inx | dx = O(n™Y) (n — o).
]

Proof. We have
(k+1) /(n+1)

Po(in, x) = (n - 1) Z Pa k(x)f In t dt

/(n+1))

~ puo@ n (e )

+éhmmkw+%%}9.
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Since

mx=Inl — (1 —xp- —yL2D o

and by Lemma 1 it is easily seen that

Pu(in, ) — I x = p,o(){In (e — jr o)+ 5.)
+ $ ptnfin(e 4 1) £
21—y
L Sk) * k=§+1—k_x4
= Pn,o(x) rn,o + Zn: pn.k(x) rn.k '{’" i L__—xl]“ k] (3)
=1 k=n+1 k
where
Fro=In (e*l i I ) + S,
and
P = In (e‘1 (1 —I——II(-)k%]L) + 8, — S, n, keN.

Next we shall estimate r, 4 and r,, ,, with the monotone increasing sequence

C":;Zl (%—ln(l+71(—)). @

The limit C of this sequence is known as the Eulerian constant (see Gelfond
[2, pp. 85-86]).

o nl = E e )0

From (4) we get
C,=8S,—In(n+1)
and thus

k41
n-+1

In

+Sn_Sk=Cn—Ck'

From (5) it follows for &k = 1, 2,..., n — 1 that

o 1 1 =z 1
= — 5 SC, — C, < -
j}k;_l (2]2 3]3) e k jz;ﬂ 22
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and by estimating the sums

1 5 1 1 1
%G TRy AT S Gsgppe ©
On the other hand we have
TR o
1 - — — 1)
In (e (14 %)) LD
Thus
1 1\ 1 1
<1+ ) ) < — 5t (7)
Hence by (6) and (7)
5 1 1 1
T T BT Tarl S SR
or
g | S — k= 1,2n— 1) 8)
rn,k ~= 6k2 n »% 1 1y, Z,..., . (
Moreover

Fpo=—14+C,, Frnn=In (e“l (1 + %)n) ,
[Fpol <In2, [Fpn] <1 —In2

From (3) we now have

\ s 1
[ Palln,x) —Inx] < —xr2+ ¥ (G + ) o
%) 1_ %
+(1—1I2)x"+ Y L—ki
k=n+1

Integrating this inequality and applying (2) we get

In2 1 n"ls 1
nT1 T nFd ,Elazﬁ(nﬂ)z

1
f | Po(In, %) — In x | dx <
0

1—In2 A |

+ n+1 +k=§+1p
1 1 S5m2 1 1
SETFT T A1 3%6 T E Ta

This proves Lemma 2.
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Lemmva 3. Iff(x) = In(1 — x), x=(0, 1), then

(1 P ) — F0) dx = 0@,

v

Proof. A short computation shows that for fi(x) = f(1 — x) we have
3 1
[ 1P ) = R dx = [T PL(L) (9]

Thus Lemma 3 follows from Lemma 2.

3. PROOF OF THEOREM 4

First we show that (i) = (ii).
We consider the bilinear functional

Ao ) = 20 [ (P ) — F(0) () dx ©

for fe Li(I) and ¢ C*I) (C¥I) the class of functions which are twice
continuously differentiable on 7).
First we will treat 4,(f, ) as a functional in f. Since

B, ., (F, 0) = F(0), B, (F, 1) = F(1) (10)

it follows from (9) by partial integration that

A (f, ) = —2n [I (Bua(F, x) — F(x)) §'(x) dx. (1D
Let s € C%(I) then we shall determine A(:, i), the limit of the sequence
A,(-,) on Ly(I). Applying the theorem of Banach and Steinhaus (see Wloka
9, p. 126]), we require that the functionals 4,(-, ) have uniformly bounded
norms on L,(I). The proof of this fact appears in the author’s dissertation [6]
and in Ditzian and May [1, Lemma 5.3]. The latter lemma was stated for
i € Cy;=(0, 1) but also holds equally well in this case. If now Fe C%(I), there
is by a theorem of Voronowskaja [7]

lim A(f. ) = — [ 31— 2) () §/9) d

|

[ 101 = 0 gy .
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Since C*(I) is dense in L,(I) and the functionals 4,(:, 4J) have uniformly
bounded norms on L,(I), we have for all fe L,({)

A(f, ) = flf ()L — x) (X)) dx. (12)
On the other hand, we are able to rewrite (9) by applying (1)
A, ) = [ () dQn(BrialF, x) — F()).
Let A, (x) = n(B,(F, x) — F(x)); then by (i), A, BV({) and by (10),
() = | hy(x) — h(0)] < varpgq A, = O(1) uniformly for all xel
Applying the theorems of Helly and Bray [8, pp. 29 and 31] we can extract

from h,(x) a subsequence hn”(x) which converges on I to a function
h(x) € BV(1) and we have for all s € C(J)

lim A,,(: ) = | 402) dh), (13

where A(0) = A(1) = 0.
From (12) and (13)

[ £ — %) w0y dx = [ 9 i) (14)

To determine the solution f of this inhomogeneous problem we will first
solve the homogeneous part

f, FE( — x) F(x)) dx = 0 (15)

or
fl FRG( — %) $"(x) + (1 — 2x) §'(x)) dx = 0. (16)
By partial integration of the second term we get
’-[ F(A — 2x) (%) dx = G(x) z/:’(x),: — fz G(x) " (x) dx,

where G(x) = [, (1 — 2¢) f(¢) dt. Because (15) holds for all i C¥(I) we
may choose Ji(x) = x and then by (15), G(1) becomes zero. Hence

[ =2 = 6 ¥ dx = 0.
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Thus we have for the absolutely continuous function G

G(x) = f(0) x(1I — x)

or
G'(x) = f)1 — 2x) = f'(x) x(1 — x) + f(x)(1 — 2x)

and from this f'(x) = 0. The general solution for the homogeneous problem
(15) is then f(x) = k (ke R).

A short computation shows that for a function 4 e BV(I), where #(0) =
A1) =0,

160 = [

3

is a particular solution for the inhomogeneous problem (14). Altogether we
have the general solution for (14)

) =k o+ Jf r (l”(i) Gl k=R)

This concludes the proof.

Now we shall prove (ii) = (i).

We must estimate || P,f — f|l; and may thereby omit constant terms,
because

Ple)=c¢ (ceR). a7
First we will rewrite fe S with £ BV(J) and #(0) = (1) =0

Fo) = : ?(IL(L)"B dt

[ g [ g 7O O,
e 1

x

If £€(0,1) is fixed, we have (see text preceding (17)) with ke BV(),
h = hy — h, where h, , h, are nondecreasing functions on I,

1= [ 20 g "B g

X

(13)
J‘ 11(t)d f 12(t)d'

Let us now consider the function

g(x):J:th(t)dth%)—tdt, xe (o 1).
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For h; nondecreasing there is such a ¢, e R that for my(f) = (t) + ¢
(tel) my(0)=0. Obviously m; is nondecreasing and m,(t) >0 for tel. Hence

g(x) = f ml(t) dr — f ’”1(’) dt + ¢ln x 4 ¢y In(1 — x).

For
gi(x) = Ll O g, xe@1)
there is
g1(x) — g1(xg) < my(xp)(In xp — In ), x, xp € (0, 1], (19)
and for

i) = — f:l’”_l(’t) d,  xelo, 1),

82(5) — gx(x0) < my(xp)(In(l — x) — In(l — X)), x, xg€ [0, 1). (20)

If x, is fixed, we get from (19) after operating with P, and then writing x
for x,

P81, %) — g1(x) < my(x)(In x — P,(ln, x)).
Hence
| Pr( 815 %) — &) < —(Pulgr>x) — &g1(x)
+ my(x)(In x — P,(In, x))
+ | my(x)(In x — P,(In, x))|.

Since jl Pg1,x)dx = fl gi(x) dx and m(0) = 0 we have from (19)
j} | Po(gy, %) — gy(x)] dx < 2 vargy y my fl | Pln,x) —Inx|dx (1)
and from (20)
[ 1 Puge . ) — &) dx < 2vargay my [ (Pu(fi ) — DI v, (22)
where fi(x) = In(1 — x).
If we now treat the terms of (18) with 4, in an analogous way we have a

function m,(t) = hy(t) + ¢, (¢, € R) with my(0) = O for te I
Altogether we get from (18)

[ 1P ) = fG) dx < ey ([ | Pulin, ) — In x| dx
I 1

+ [ VP ) — A0 )
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where fi(x) - - In(f — x) and

Ky 2var g my - 2varg i ot ey

Applying Lemma 2 and Lemma 3 the implication (ii) = (i) is shown.

Proof of (iii). We have limn P, f -~ f# =0 and thus for & = C¥/)

N>

lim 2n |I (P(f. ) — f(x)) (x) dx = O.

From this it follows (see proof of (i) =- (ii)) that

f] FE( — X) () dx = 0,

the homogeneous problem (15) with its general solution f(x) = & (k = R).
This concludes the proof.

]
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