The L₁ Saturation Class of the Kantorovič Operator

VOLKER MAIER*

Abteilung Mathematik, Universität Dortmund, Postfach 500500, D-4600 Dortmund 50, West Germany

Communicated by G. G. Lorentz

Received August 2, 1976

1. Introduction and Results

If F is a real-valued function on the interval I = [0, 1], the nth Bernstein polynomial $B_n(F)$ of F is

$$B_n(F, x) = \sum_{k=0}^n F(k/n) p_{n,k}(x),$$

where

$$p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}.$$

A modification of the Bernstein polynomials due to Kantorovič [4] makes it possible to approximate functions $f \in L_1(I)$ ($L_1(I)$ is the linear space of real-valued Lebesgue integrable functions with the usual L_1 norm) by polynomials, namely by

$$P_n(f,x) = (n+1) \sum_{k=0}^n p_{n,k}(x) \int_{k/(n+1)}^{(k+1)/(n+1)} f(t) dt.$$

Let F denote the indefinite integral $\int_{0}^{x} f(t) dt$. Then

$$\frac{d}{dx}B_{n+1}(F,x) = P_n(f,x) \tag{1}$$

and thus

$$\operatorname{var}_{[0,1]}(B_{n+1}(F,\cdot) - F(\cdot)) = \int_0^1 |P_n(f,x) - f(x)| \, dx.$$

For $f \in L_1(I)$ Lorentz [5] proved in his dissertation that

$$\int_0^1 |P_n(f, x) - f(x)| dx \to 0 \ (n \to \infty).$$

^{*} This paper is part of the author's dissertation.

He also obtained there the following result where AC(I) denotes the class of real-valued absolutely continuous functions on I.

THEOREM 1. $F \in AC(I)$ if and only if

$$\lim_{n \to \infty} \text{var}_{[0,1]}(B_n(F, \cdot) - F(\cdot)) = 0.$$

The following quantitative version of one part of Lorentz' result is due to Hoeffding [3].

THEOREM 2. If F is the difference of two convex absolutely continuous functions on I and $J(F') = \int_0^1 x^{1/2} (1-x)^{1/2} |df(x)|$ is finite, then

$$\operatorname{var}_{[0,1]}(B_n(F,\cdot) - F(\cdot)) = O(n^{-1/2}).$$

Hoeffding obtained Theorem 2 as a corollary to the following

THEOREM 3. If f is a Lebesgue integrable function of bounded variation inside (0, 1), then

$$\int_0^1 |P_n(f,x)-f(x)| dx \leq (2/e)^{1/2} J(f) n^{-1/2},$$

where J(f) = J(F') (see Theorem 2).

Inverse theorems and a "local" version of the saturation are due to Ditzian and May [1].

In this paper we deal with the "global" version of the saturation. We determine the saturation class of the Kantorovič operator and of the Bernstein polynomials in the L_1 norm and in the variation, respectively. Let us denote by BV(I) the class of functions of bounded variation on I. Then our result is

THEOREM 4. For $f \in L_1(I)$ and $F(x) = \int_0^x f(t) dt$ the following two statements are equivalent:

- (i) $\operatorname{var}_{[0,1]}(B_{n+1}(F,\cdot) F(\cdot)) = \int_0^1 |P_n(f,x) f(x)| dx = O(n^{-1}),$
- (ii) $F \in AC(I)$ and $F' \doteq f$, $f \in S$,

$$S := \left\{ f: f(x) \doteq k + \int_{\xi}^{x} \frac{h(t)}{t(1-t)} dt, \, \xi \in (0,1), \, k \in \mathbb{R} \text{ and } h \in BV(I), \right.$$
$$\left. h(0) = h(1) = 0 \right\}.$$

Moreover, if

(iii) $\operatorname{var}_{[0,1]}(B_{n+1}(F,\cdot) - F(\cdot)) = \int_{0}^{1} |P_n(f,x) - f(x)| dx = o(n^{-1}),$ then f is constant a.e.

2. Some Lemmas

The proof of Theorem 4 is based on three lemmas. But first we will give an often used equality. A simple calculation shows that expressed in terms of the *B*-function

$$\int_{0}^{1} p_{n,k}(x) dx = \int_{0}^{1} {n \choose k} x^{k} (1-x)^{n-k} dx$$

$$= {n \choose k} B(k+1, n-k+1) = \frac{1}{n+1}.$$
 (2)

LEMMA 1. If $x \in [0, 1]$ then, for $S_k = \sum_{i=1}^k 1/i$, $k \in \mathbb{N}$, and $S_0 = 0$, we get

$$\sum_{k=0}^{n} (S_n - S_k) p_{n,k}(x) = \sum_{k=1}^{n} \frac{(1-x)^k}{k}, \quad n \in \mathbb{N}.$$

Proof. We have

$$S_k = \sum_{i=1}^k \frac{1}{i} = \sum_{i=0}^{k-1} \int_0^1 \xi^i \, d\xi = \int_0^1 \frac{1 - \xi^k}{1 - \xi} \, d\xi,$$

and it follows that

$$S_n - S_k = \int_0^1 \frac{\xi^k - \xi^n}{1 - \xi} d\xi.$$

Hence

$$\sum_{k=0}^{n} (S_n - S_k) p_{nk}(x) = \int_0^1 \frac{((1-x) + x\xi)^n - \xi^n}{1-\xi} d\xi$$
$$= \sum_{k=1}^{n} \binom{n}{k} (1-x)^k \int_0^1 \xi^{n-k} (1-\xi)^{k-1} d\xi.$$

Applying (2) in a modified form we obtain the result of Lemma 1.

LEMMA 2. If $0 < x \le 1$, then

$$\int_{0}^{1} |P_{n}(\ln, x) - \ln x| dx = O(n^{-1}) \qquad (n \to \infty).$$

Proof. We have

$$P_n(\ln x) = (n+1) \sum_{k=0}^n p_{n,k}(x) \int_{(k/(n+1))}^{(k+1)/(n+1)} \ln t \, dt$$

$$= p_{n,0}(x) \ln \left(e^{-1} \frac{1}{n+1} \right)$$

$$+ \sum_{k=1}^n p_{n,k}(x) \ln \left(e^{-1} \left(1 + \frac{1}{k} \right)^k \frac{k+1}{n+1} \right).$$

Since

$$\ln x = \ln(1 - (1 - x)) = -\sum_{k=1}^{\infty} \frac{(1 - x)^k}{k}, \quad x \in (0, 1]$$

and by Lemma 1 it is easily seen that

$$P_{n}(\ln, x) - \ln x = p_{n,0}(x) \left(\ln \left(e^{-1} \frac{1}{n+1} \right) + S_{n} \right)$$

$$+ \sum_{k=1}^{n} p_{n,k}(x) \left(\ln \left(e^{-1} \left(1 + \frac{1}{k} \right)^{k} \frac{k+1}{n+1} \right) + S_{n} - S_{k} \right) + \sum_{k=n+1}^{\infty} \frac{(1-x)^{k}}{k}$$

$$= p_{n,0}(x) r_{n,0} + \sum_{k=1}^{n} p_{n,k}(x) r_{n,k} + \sum_{k=n+1}^{\infty} \frac{(1-x)^{k}}{k}, \quad (3)$$

where

$$r_{n,0} = \ln\left(e^{-1} \frac{1}{n+1}\right) + S_n$$

and

$$r_{n,k} = \ln\left(e^{-1}\left(1 + \frac{1}{k}\right)^k \frac{k+1}{n+1}\right) + S_n - S_k, \quad n, k \in \mathbb{N}.$$

Next we shall estimate $r_{n,0}$ and $r_{n,k}$ with the monotone increasing sequence

$$C_n = \sum_{k=1}^n \left(\frac{1}{k} - \ln\left(1 + \frac{1}{k}\right) \right). \tag{4}$$

The limit C of this sequence is known as the Eulerian constant (see Gelfond [2, pp. 85-86]).

$$C = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \ln\left(1 + \frac{1}{k}\right) \right) = \sum_{k=1}^{\infty} \left(\frac{1}{2k^2} - \frac{1}{3k^3} + - \cdots \right) > 0.$$
 (5)

From (4) we get

$$C_n = S_n - \ln(n+1)$$

and thus

$$\ln\frac{k+1}{n+1}+S_n-S_k=C_n-C_k.$$

From (5) it follows for k = 1, 2, ..., n - 1 that

$$\sum_{j=k+1}^{n} \left(\frac{1}{2j^2} - \frac{1}{3j^3} \right) \leqslant C_n - C_k \leqslant \sum_{j=k+1}^{n} \frac{1}{2j^2}$$

and by estimating the sums

$$\frac{1}{2k} - \frac{5}{6k^2} + \frac{1}{3(n+1)^2} - \frac{1}{n+1} \leqslant C_n - C_k \leqslant \frac{1}{2k}. \tag{6}$$

On the other hand we have

$$\ln\left(e^{-1}\left(1+\frac{1}{k}\right)^{k}\right) = \sum_{i=1}^{\infty} (-1)^{i} \frac{1}{(i+1)k^{i}}.$$

Thus

$$-\frac{1}{2k} \leqslant \ln\left(e^{-1}\left(1 + \frac{1}{k}\right)^{k}\right) \leqslant -\frac{1}{2k} + \frac{1}{3k^{2}}.$$
 (7)

Hence by (6) and (7)

$$-\frac{5}{6k^2}+\frac{1}{3(n+1)^2}-\frac{1}{n+1}\leqslant r_{n,k}\leqslant \frac{1}{3k^2},$$

or

$$|r_{n,k}| \le \frac{5}{6k^2} + \frac{1}{n+1}$$
 $(k = 1, 2, ..., n-1).$ (8)

Moreover

$$r_{n,0} = -1 + C_n$$
, $r_{n,n} = \ln\left(e^{-1}\left(1 + \frac{1}{n}\right)^n\right)$, $|r_{n,0}| \leqslant \ln 2$, $|r_{n,n}| \leqslant 1 - \ln 2$.

From (3) we now have

$$|P_n(\ln, x) - \ln x| \le (1 - x)^n \ln 2 + \sum_{k=1}^{n-1} \left(\frac{5}{6k^2} + \frac{1}{n+1} \right) p_{n,k}(x) + (1 - \ln 2) x^n + \sum_{k=n+1}^{\infty} \frac{(1 - x)^k}{k}.$$

Integrating this inequality and applying (2) we get

$$\int_{0}^{1} |P_{n}(\ln, x) - \ln x| dx \leq \frac{\ln 2}{n+1} + \frac{1}{n+1} \sum_{k=1}^{n-1} \frac{5}{6k^{2}} + \frac{1}{(n+1)^{2}} + \frac{1-\ln 2}{n+1} + \sum_{k=n+1}^{\infty} \frac{1}{k^{2}}$$
$$\leq \frac{1}{n+1} + \frac{1}{n+1} \frac{5\pi^{2}}{36} + \frac{1}{(n+1)^{2}} + \frac{1}{n}.$$

This proves Lemma 2.

LEMMA 3. If $f(x) = \ln(1 - x)$, $x \in (0, 1)$, then

$$\int_0^1 |P_n(f, x) - f(x)| \, dx = O(n^{-1}).$$

Proof. A short computation shows that for $f_1(x) = f(1-x)$ we have

$$\int_0^1 |P_n(f_1, x) - f_1(x)| dx = \int_0^1 |P_n(f, x) - f(x)| dx.$$

Thus Lemma 3 follows from Lemma 2.

3. Proof of Theorem 4

First we show that (i) \Rightarrow (ii).

We consider the bilinear functional

$$A_n(f, \psi) = 2n \int_I (P_n(f, x) - f(x)) \, \psi(x) \, dx \tag{9}$$

for $f \in L_1(I)$ and $\psi \in C^2(I)$ ($C^2(I)$ the class of functions which are twice continuously differentiable on I).

First we will treat $A_n(f, \psi)$ as a functional in f. Since

$$B_{n+1}(F,0) = F(0), \qquad B_{n+1}(F,1) = F(1)$$
 (10)

it follows from (9) by partial integration that

$$A_n(f, \psi) = -2n \int_I (B_{n+1}(F, x) - F(x)) \, \psi'(x) \, dx. \tag{11}$$

Let $\psi \in C^2(I)$ then we shall determine $A(\cdot, \psi)$, the limit of the sequence $A_n(\cdot, \psi)$ on $L_1(I)$. Applying the theorem of Banach and Steinhaus (see Wloka [9, p. 126]), we require that the functionals $A_n(\cdot, \psi)$ have uniformly bounded norms on $L_1(I)$. The proof of this fact appears in the author's dissertation [6] and in Ditzian and May [1, Lemma 5.3]. The latter lemma was stated for $\psi \in C_0^{\overline{\omega}}(0, 1)$ but also holds equally well in this case. If now $F \in C^2(I)$, there is by a theorem of Voronowskaja [7]

$$\lim_{n \to \infty} A_n(f, \psi) = -\int_I x(1 - x) f'(x) \psi'(x) dx$$
$$= \int_I f(x)(x(1 - x) \psi'(x))' dx.$$

Since $C^2(I)$ is dense in $L_1(I)$ and the functionals $A_n(\cdot, \psi)$ have uniformly bounded norms on $L_1(I)$, we have for all $f \in L_1(I)$

$$A(f, \psi) = \int_{I} f(x)(x(1-x) \psi'(x))' dx.$$
 (12)

On the other hand, we are able to rewrite (9) by applying (1)

$$A_n(f, \psi) = \int_I \psi(x) \ d(2n(B_{n+1}(F, x) - F(x)).$$

Let $h_n(x) = n(B_{n+1}(F, x) - F(x))$; then by (i), $h_n \in BV(I)$ and by (10), $|h_n(x)| = |h_n(x) - h_n(0)| \le \text{var}_{[0,1]} h_n = O(1)$ uniformly for all $x \in I$. Applying the theorems of Helly and Bray [8, pp. 29 and 31] we can extract from $h_n(x)$ a subsequence $h_n(x)$ which converges on I to a function $h(x) \in BV(I)$ and we have for all $\psi \in C(I)$

$$\lim_{n\to\infty} A_{n_p}(f,\psi) = \int_I \psi(x) \, dh(x), \tag{13}$$

where h(0) = h(1) = 0.

From (12) and (13)

$$\int_{I} f(x)(x(1-x) \psi'(x))' dx = \int_{I} \psi(x) dh(x).$$
 (14)

To determine the solution f of this inhomogeneous problem we will first solve the homogeneous part

$$\int_{I} f(x)(x(1-x) \psi'(x))' dx = 0$$
 (15)

or

$$\int_{I} f(x)(x(1-x) \psi''(x) + (1-2x) \psi'(x)) dx = 0.$$
 (16)

By partial integration of the second term we get

$$\int_{I} f(x)(1-2x) \, \psi'(x) \, dx = G(x) \, \psi'(x) \Big|_{0}^{1} - \int_{I} G(x) \, \psi''(x) \, dx,$$

where $G(x) = \int_0^x (1 - 2t) f(t) dt$. Because (15) holds for all $\psi \in C^2(I)$ we may choose $\psi(x) = x$ and then by (15), G(1) becomes zero. Hence

$$\int_{I} (f(x) x(1-x) - G(x)) \psi''(x) dx = 0.$$

Thus we have for the absolutely continuous function G

$$G(x) = f(x) x(1-x)$$

or

$$G'(x) = f(x)(1-2x) = f'(x)x(1-x) + f(x)(1-2x)$$

and from this $f'(x) \doteq 0$. The general solution for the homogeneous problem (15) is then $f(x) \doteq k$ ($k \in \mathbb{R}$).

A short computation shows that for a function $h \in BV(I)$, where h(0) = h(1) = 0,

$$f(x) = \int_{\varepsilon}^{x} \frac{h(t)}{t(1-t)} dt$$

is a particular solution for the inhomogeneous problem (14). Altogether we have the general solution for (14)

$$f(x) \doteq k + \int_{\varepsilon}^{x} \frac{h(t)}{t(1-t)} dt$$
 $(k \in \mathbb{R}).$

This concludes the proof.

Now we shall prove (ii) \Rightarrow (i).

We must estimate $||P_n f - f||_1$ and may thereby omit constant terms, because

$$P_n(c) = c \qquad (c \in \mathbb{R}). \tag{17}$$

First we will rewrite $f \in S$ with $h \in BV(I)$ and h(0) = h(1) = 0

$$f(x) = \int_{\varepsilon}^{x} \frac{h(t)}{t(1-t)} dt$$

= $\int_{\varepsilon}^{1} \frac{h(t)}{t} dt - \int_{x}^{1} \frac{h(t)}{t} dt + \int_{0}^{x} \frac{h(t)}{1-t} dt - \int_{0}^{\varepsilon} \frac{h(t)}{1-t} dt.$

If $\xi \in (0, 1)$ is fixed, we have (see text preceding (17)) with $h \in BV(I)$, $h = h_1 - h_2$ where h_1 , h_2 are nondecreasing functions on I,

$$f(x) = \int_{x}^{1} \frac{h_{2}(t)}{t} dt - \int_{x}^{1} \frac{h_{1}(t)}{t} dt + \int_{0}^{x} \frac{h_{1}(t)}{1 - t} dt - \int_{0}^{x} \frac{h_{2}(t)}{1 - t} dt.$$
(18)

Let us now consider the function

$$g(x) = \int_{x}^{1} \frac{h_{1}(t)}{t} dt - \int_{0}^{x} \frac{h_{1}(t)}{1 - t} dt, \quad x \in (0, 1).$$

For h_1 nondecreasing there is such a $c_1 \in \mathbb{R}$ that for $m_1(t) = h_1(t) + c_1(t \in I)$ $m_1(0) = 0$. Obviously m_1 is nondecreasing and $m_1(t) \ge 0$ for $t \in I$. Hence

$$g(x) = \int_{x}^{1} \frac{m_{1}(t)}{t} dt - \int_{0}^{x} \frac{m_{1}(t)}{1-t} dt + c_{1} \ln x + c_{1} \ln(1-x).$$

For

$$g_1(x) = \int_0^1 \frac{m_1(t)}{t} dt, \quad x \in (0, 1],$$

there is

$$g_1(x) - g_1(x_0) \leqslant m_1(x_0)(\ln x_0 - \ln x), \quad x, x_0 \in (0, 1],$$
 (19)

and for

$$g_2(x) = -\int_0^x \frac{m_1(t)}{1-t} dt, \qquad x \in [0, 1),$$

$$g_2(x) - g_2(x_0) \le m_1(x_0)(\ln(1-x) - \ln(1-x_0)), \qquad x, x_0 \in [0, 1). \tag{20}$$

If x_0 is fixed, we get from (19) after operating with P_n and then writing x for x_0

$$P_n(g_1, x) - g_1(x) \leq m_1(x)(\ln x - P_n(\ln x)).$$

Hence

$$|P_n(g_1, x) - g_1(x)| \le -(P_n(g_1, x) - g_1(x)) + m_1(x)(\ln x - P_n(\ln, x)) + |m_1(x)(\ln x - P_n(\ln, x))|.$$

Since $\int_{L} P_n(g_1, x) dx = \int_{L} g_1(x) dx$ and $m_1(0) = 0$ we have from (19)

$$\int_{I} |P_{n}(g_{1}, x) - g_{1}(x)| dx \leq 2 \operatorname{var}_{[0,1]} m_{1} \int_{I} |P_{n}(\ln x) - \ln x| dx$$
 (21)

and from (20)

$$\int_{I} |P_{n}(g_{2}, x) - g_{2}(x)| dx \leq 2 \operatorname{var}_{[0,1]} m_{1} \int_{I} |(P_{n}(f_{1}, x) - f_{1}(x))| dx, \quad (22)$$

where $f_1(x) = \ln(1-x)$.

If we now treat the terms of (18) with h_2 in an analogous way we have a function $m_2(t) = h_2(t) + c_2$ ($c_2 \in \mathbb{R}$) with $m_2(0) = 0$ for $t \in I$.

Altogether we get from (18)

$$\int_{I} |P_{n}(f, x) - f(x)| dx \leq k_{1} \left(\int_{I} |P_{n}(\ln, x) - \ln x| dx \right) + \int_{I} |P_{n}(f_{1}, x) - f_{1}(x)| dx \right),$$

where $f_1(x) = \ln(1 - x)$ and

$$k_1 = 2 \operatorname{var}_{[0,1]} m_1 - 2 \operatorname{var}_{[0,1]} m_2 + c_1 \mid -c_2 \mid$$

Applying Lemma 2 and Lemma 3 the implication (ii) \Rightarrow (i) is shown.

Proof of (iii). We have $\lim_{n\to\infty} n \mid P_n f - f \mid_1 = 0$ and thus for $\psi \in C^2(I)$

$$\lim_{n\to\infty} 2n \int_I (P_n(f,x) - f(x)) \, \psi(x) \, dx = 0.$$

From this it follows (see proof of (i) \Rightarrow (ii)) that

$$\int_{I} f(x)(x(1-x) \, \psi'(x))' \, dx = 0,$$

the homogeneous problem (15) with its general solution f(x) = k ($k \in \mathbb{R}$). This concludes the proof.

REFERENCES

- 1. Z. DITZIAN AND C. P. MAY, L_p saturation and inverse theorems for modified Bernstein polynomials, *Indiana Univ. Math. J.* 25 (1976), 733–751.
- A. O. GELFOND, "Differenzenrechnung," VEB Deutscher Verlag der Wissenschaften, Berlin, 1958.
- 3. W. Hoeffding, The L_1 norm of the approximation error for Bernstein-type polynomials, *J. Approximation Theory* **4** (1971), 347-356.
- L. V. Kantorovič, Sur certains développements suivant les polynômes de la forme de S. Bernstein, I, II, C. R. Acad. Sci. USSR A (1930), 563-568, 595-600.
- 5. G. G. LORENTZ, Zur Theorie der Polynome von S. Bernstein, Mat. Sb. 2 (1937), 543-556.
- 6. V. MAIER, "Güte- und Saturationsaussagen für die L_1 -Approximation durch spezielle Folgen linearer positiver Operatoren," Dissertation, Universität Dortmund, 1976.
- 7. E. VORONOWSKAJA, Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de M. Bernstein, C. R. Acad. Sci. URSS A (1932), 79-85.
- 8. D. V. Widder, "The Laplace Transform," Princeton Univ. Press, Princeton, N.J., 1946.
- 9. J. Wloka, "Funktionalanalysis und Anwendungen," Walter de Gruyter, Berlin, 1971.