The L_{1} Saturation Class of the Kantorovič Operator

Volker Maier*
Abteilung Mathematik, Universität Dortmund, Postfach 500500, D-4600 Dortmund 50, West Germany

Communicated by G. G. Lorentz
Received August 2, 1976

1. Introduction and Results

If F is a real-valued function on the interval $I=[0,1]$, the nth Bernstein polynomial $B_{n}(F)$ of F is

$$
B_{n}(F, x)=\sum_{k=0}^{n} F(k / n) p_{n, k}(x)
$$

where

$$
p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}
$$

A modification of the Bernstein polynomials due to Kantorovič [4] makes it possible to approximate functions $f \in L_{1}(I)\left(L_{1}(I)\right.$ is the linear space of real-valued Lebesgue integrable functions with the usual L_{1} norm) by polynomials, namely by

$$
P_{n}(f, x)=(n+1) \sum_{k=0}^{n} p_{n, k}(x) \int_{k /(n+1)}^{(k+1) /(n+1)} f(t) d t
$$

Let F denote the indefinite integral $\int_{o}^{x} f(t) d t$. Then

$$
\begin{equation*}
\frac{d}{d x} B_{n+1}(F, x)=P_{n}(f, x) \tag{1}
\end{equation*}
$$

and thus

$$
\operatorname{var}_{[0,1]}\left(B_{n+1}(F, \cdot)-F(\cdot)\right)=\int_{0}^{1}\left|P_{n}(f, x)-f(x)\right| d x
$$

For $f \in L_{1}(I)$ Lorentz [5] proved in his dissertation that

$$
\int_{0}^{1}\left|P_{n}(f, x)-f(x)\right| d x \rightarrow 0(n \rightarrow \infty)
$$

[^0]He also obtained there the following result where $A C(I)$ denotes the class of real-valued absolutely continuous functions on I.

Theorem 1. $F \in \mathrm{AC}(\mathrm{I})$ if and only if

$$
\lim _{n \rightarrow \infty} \operatorname{var}_{[0,1]}\left(B_{n}(F, \cdot)-F(\cdot)\right)=0
$$

The following quantitative version of one part of Lorentz' result is due to Hoeffding [3].

Theorem 2. If F is the difference of two convex absolutely continuous functions on I and $J\left(F^{\prime}\right)=\int_{0}^{1} x^{-1 / 2}(1-x)^{1 / 2}|d f(x)|$ is finite, then

$$
\operatorname{var}_{[0,1]}\left(B_{n}(F, \cdot)-F(\cdot)\right)=O\left(n^{-1 / 2}\right)
$$

Hoeffding obtained Theorem 2 as a corollary to the following
Theorem 3. If f is a Lebesgue integrable function of bounded variation inside $(0,1)$, then

$$
\int_{0}^{1} \mid P_{n}(f, x)-f(x) d x \leqslant(2 / e)^{1 / 2} J(f) n^{-1 / 2}
$$

where $J(f)=J\left(F^{\prime}\right)$ (see Theorem 2).
Inverse theorems and a "local" version of the saturation are due to Ditzian and May [1].

In this paper we deal with the "global" version of the saturation. We determine the saturation class of the Kantorovič operator and of the Bernstein polynomials in the L_{1} norm and in the variation, respectively. Let us denote by $\mathrm{BV}(I)$ the class of functions of bounded variation on I. Then our result is

Theorem 4. For $f \in L_{1}(I)$ and $F(x)=\int_{o}^{x} f(t) d t$ the following two statements are equivalent:
(i) $\operatorname{var}_{[0,1]}\left(B_{n+1}(F, \cdot)-F(\cdot)\right)=\int_{o}^{1}\left|P_{n}(f, x)-f(x)\right| d x=O\left(n^{-1}\right)$,
(ii) $F \in \mathrm{AC}(I)$ and $F^{\prime} \doteq f, \quad f \in S$,

$$
\begin{array}{r}
S:-\left\{f: f(x)=k+\int_{:}^{x} \frac{h(t)}{t(1-t)} d t, \xi \in(0,1), k \in \mathbb{R} \text { and } h \in B V(I)\right. \\
h(0)=h(1)=0\}
\end{array}
$$

Moreover, if

(iii) $\operatorname{var}_{[0,1]}\left(B_{n+1}(F, \cdot)-F(\cdot)\right)=\int_{o}^{1}\left|P_{n}(f, x)-f(x)\right| d x=o\left(n^{-1}\right)$, then f is constant a.e.

2. Some Lemmas

The proof of Theorem 4 is based on three lemmas. But first we will give an often used equality. A simple calculation shows that expressed in terms of the B-function

$$
\begin{align*}
\int_{0}^{1} p_{n . k}(x) d x & =\int_{0}^{1}\binom{n}{k} x^{k}(1-x)^{n-k} d x \\
& =\binom{n}{k} B(k+1, n-k+1)=\frac{1}{n+1} . \tag{2}
\end{align*}
$$

Lemma 1. If $x \in[0,1]$ then, for $S_{k}=\sum_{i=1}^{k} 1 / i, k \in \mathbb{N}$, and $S_{0}=0$, we get

$$
\sum_{k=0}^{n}\left(S_{n}-S_{k_{k}}\right) p_{n, k}(x)=\sum_{k=1}^{n} \frac{(1-x)^{k}}{k}, \quad n \in \mathbb{N} .
$$

Proof. We have

$$
S_{k}=\sum_{i=1}^{k} \frac{1}{i}=\sum_{i=0}^{k-1} \int_{0}^{1} \xi^{i} d \xi=\int_{0}^{1} \frac{1-\xi^{k}}{1-\xi} d \xi
$$

and it follows that

$$
S_{n}-S_{k}=\int_{0}^{1} \frac{\xi^{k}-\xi^{n}}{1-\xi} d \xi
$$

Hence

$$
\begin{aligned}
\sum_{k=0}^{n}\left(S_{n}-S_{k}\right) p_{n k}(x) & =\int_{0}^{1} \frac{((1-x)+x \xi)^{n}-\xi^{n}}{1-\xi} d \xi \\
& =\sum_{k=1}^{n}\binom{n}{k}(1-x)^{k} \int_{0}^{1} \xi^{n-k}(1-\xi)^{k-1} d \xi
\end{aligned}
$$

Applying (2) in a modified form we obtain the result of Lemma 1.
Lemma 2. If $0<x \leqslant 1$, then

$$
\int_{0}^{1}\left|P_{n}(\ln , x)-\ln x\right| d x=O\left(n^{-1}\right) \quad(n \rightarrow \infty)
$$

Proof. We have

$$
\begin{aligned}
P_{n}(\ln , x)= & (n+1) \sum_{k=0}^{n} p_{n, k}(x) \int_{(k /(n+1))}^{(k+1) /(n+1)} \ln t d t \\
= & p_{n, 0}(x) \ln \left(e^{-1} \frac{1}{n+1}\right) \\
& +\sum_{k=1}^{n} p_{n, k}(x) \ln \left(e^{-1}\left(1+\frac{1}{k}\right)^{k} \frac{k+1}{n+1}\right)
\end{aligned}
$$

Since

$$
\ln x=\ln (1-(1 \cdots x))=-\sum_{k=1}^{\alpha} \frac{(1 \cdots x)^{k}}{\mathrm{k}}, \quad x \in(0,1]
$$

and by Lemma 1 it is easily seen that

$$
\begin{align*}
P_{n}(\ln , x)-\ln x= & p_{n, 0}(x)\left(\ln \left(e^{-1} \frac{1}{n+1}\right)+S_{n}\right) \\
& +\sum_{k=1}^{n} p_{n, k}(x)\left(\ln \left(e^{-1}\left(1+\frac{1}{k}\right)^{k} \frac{k+1}{n+1}\right)\right. \\
& \left.+S_{n}-S_{k}\right)+\sum_{k=n+1}^{\infty} \frac{(1-x)^{k}}{k} \\
= & p_{n, 0}(x) r_{n, 0}+\sum_{k=1}^{n} p_{n, k}(x) r_{n, k}+\sum_{k=n+1}^{\infty} \frac{(1-x)^{k}}{k} \tag{3}
\end{align*}
$$

where

$$
r_{n, 0}=\ln \left(e^{-1} \frac{1}{n+1}\right)+S_{n}
$$

and

$$
r_{n, k}=\ln \left(e^{-1}\left(1+\frac{1}{k}\right)^{k} \frac{k+1}{n+1}\right)+S_{n}-S_{k}, \quad n, k \in \mathbb{N} .
$$

Next we shall estimate $r_{n, 0}$ and $r_{n, k}$ with the monotone increasing sequence

$$
\begin{equation*}
C_{n}=\sum_{k=1}^{n}\left(\frac{1}{k}-\ln \left(1+\frac{1}{k}\right)\right) . \tag{4}
\end{equation*}
$$

The limit C of this sequence is known as the Eulerian constant (see Gelfond [2, pp. 85-86]).

$$
\begin{equation*}
C=\sum_{k=1}^{\infty}\left(\frac{1}{k}-\ln \left(1+\frac{1}{k}\right)\right)=\sum_{k=1}^{\infty}\left(\frac{1}{2 k^{2}}-\frac{1}{3 k^{3}}+-\cdots\right)>0 \tag{5}
\end{equation*}
$$

From (4) we get

$$
C_{n}=S_{n}-\ln (n+1)
$$

and thus

$$
\ln \frac{k+1}{n+1}+S_{n}-S_{k}=C_{n}-C_{k}
$$

From (5) it follows for $k=1,2, \ldots, n-1$ that

$$
\sum_{j=k+1}^{n}\left(\frac{1}{2 j^{2}}-\frac{1}{3 j^{3}}\right) \leqslant C_{n}-C_{k} \leqslant \sum_{j=k+1}^{n} \frac{1}{2 j^{2}}
$$

and by estimating the sums

$$
\begin{equation*}
\frac{1}{2 k}-\frac{5}{6 k^{2}}+\frac{1}{3(n+1)^{2}}-\frac{1}{n+1} \leqslant C_{n}-C_{k} \leqslant \frac{1}{2 k} \tag{6}
\end{equation*}
$$

On the other hand we have

$$
\ln \left(e^{-1}\left(1+\frac{1}{k}\right)^{k}\right)=\sum_{i=1}^{\infty}(-1)^{i} \frac{1}{(i+1) k^{i}}
$$

Thus

$$
\begin{equation*}
-\frac{1}{2 k} \leqslant \ln \left(e^{-1}\left(1+\frac{1}{k}\right)^{k}\right) \leqslant-\frac{1}{2 k}+\frac{1}{3 k^{2}} \tag{7}
\end{equation*}
$$

Hence by (6) and (7)

$$
-\frac{5}{6 k^{2}}+\frac{1}{3(n+1)^{2}}-\frac{1}{n+1} \leqslant r_{n, k} \leqslant \frac{1}{3 k^{2}},
$$

or

$$
\begin{equation*}
\left|r_{n, k}\right| \leqslant \frac{5}{6 k^{2}}+\frac{1}{n+1} \quad(k=1,2, \ldots, n-1) \tag{8}
\end{equation*}
$$

Moreover

$$
\begin{gathered}
r_{n, 0}=-1+C_{n}, \quad r_{n, n}=\ln \left(e^{-1}\left(1+\frac{1}{n}\right)^{n}\right) \\
\left|r_{n, 0}\right| \leqslant \ln 2, \quad\left|r_{n, n}\right| \leqslant 1-\ln 2
\end{gathered}
$$

From (3) we now have

$$
\begin{aligned}
\left|P_{n}(\ln , x)-\ln x\right| \leqslant & (1-x)^{n} \ln 2+\sum_{k=1}^{n-1}\left(\frac{5}{6 k^{2}}+\frac{1}{n+1}\right) p_{n, k}(x) \\
& +(1-\ln 2) x^{n}+\sum_{k=n+1}^{\infty} \frac{(1-x)^{k}}{k}
\end{aligned}
$$

Integrating this inequality and applying (2) we get

$$
\begin{aligned}
\int_{0}^{1}\left|P_{n}(\ln , x)-\ln x\right| d x \leqslant & \frac{\ln 2}{n+1}+\frac{1}{n+1} \sum_{k=1}^{n-1} \frac{5}{6 k^{2}}+\frac{1}{(n+1)^{2}} \\
& +\frac{1-\ln 2}{n+1}+\sum_{k=n+1}^{\infty} \frac{1}{k^{2}} \\
\leqslant & \frac{1}{n+1}+\frac{1}{n+1} \frac{5 \pi^{2}}{36}+\frac{1}{(n+1)^{2}}+\frac{1}{n}
\end{aligned}
$$

This proves Lemma 2.

Lemma 3. If $f(x)=\ln (1-x), x \in(0,1)$, then

$$
\int_{0}^{1}\left|P_{n}(f, x)-f(x)\right| d x=O\left(n^{-1}\right)
$$

Proof. A short computation shows that for $f_{1}(x)=f(1-x)$ we have

$$
\int_{0}^{1}\left|P_{n}\left(f_{1}, x\right)-f_{1}(x)\right| d x=\int_{0}^{1}\left|P_{n}(f, x)-f(x)\right| d x
$$

Thus Lemma 3 follows from Lemma 2.

3. Proof of Theorem 4

First we show that (i) \rightarrow (ii).
We consider the bilinear functional

$$
\begin{equation*}
A_{n}(f, \psi)=2 n \int_{I}\left(P_{n}(f, x)-f(x)\right) \psi(x) d x \tag{9}
\end{equation*}
$$

for $f \in L_{\mathbf{1}}(I)$ and $\psi \in C^{2}(I)\left(C^{2}(I)\right.$ the class of functions which are twice continuously differentiable on I).

First we will treat $A_{n}(f, \psi)$ as a functional in f. Since

$$
\begin{equation*}
B_{n+1}(F, 0)=F(0), \quad B_{n+1}(F, 1)=F(1) \tag{10}
\end{equation*}
$$

it follows from (9) by partial integration that

$$
\begin{equation*}
A_{n}(f, \psi)=-2 n \int_{I}\left(B_{n+1}(F, x)-F(x)\right) \psi^{\prime}(x) d x \tag{11}
\end{equation*}
$$

Let $\psi \in C^{2}(I)$ then we shall determine $A(\cdot, \psi)$, the limit of the sequence $A_{n}(\cdot, \psi)$ on $L_{1}(I)$. Applying the theorem of Banach and Steinhaus (see Wloka [9, p. 126]), we require that the functionals $A_{n}(\cdot, \psi)$ have uniformly bounded norms on $L_{1}(I)$. The proof of this fact appears in the author's dissertation [6] and in Ditzian and May [1, Lemma 5.3]. The latter lemma was stated for $\psi \in C_{0}{ }^{\bar{\infty}}(0,1)$ but also holds equally well in this case. If now $F \in C^{2}(I)$, there is by a theorem of Voronowskaja [7]

$$
\begin{aligned}
\lim _{n \rightarrow \infty} A_{n}(f, \psi) & =-\int_{I} x(1-x) f^{\prime}(x) \psi^{\prime}(x) d x \\
& =\int_{I} f(x)\left(x(1-x) \psi^{\prime}(x)\right)^{\prime} d x
\end{aligned}
$$

Since $C^{2}(I)$ is dense in $L_{1}(I)$ and the functionals $A_{n}(\cdot, \psi)$ have uniformly bounded norms on $L_{1}(I)$, we have for all $f \in L_{1}(I)$

$$
\begin{equation*}
A(f, \psi)=\int_{I} f(x)\left(x(1-x) \psi^{\prime}(x)\right)^{\prime} d x \tag{12}
\end{equation*}
$$

On the other hand, we are able to rewrite (9) by applying (1)

$$
A_{n}(f, \psi)=\int_{I} \psi(x) d\left(2 n\left(B_{n+1}(F, x)-F(x)\right) .\right.
$$

Let $h_{n}(x)=n\left(B_{n+1}(F, x)-F(x)\right)$; then by (i), $h_{n} \in \mathrm{BV}(I)$ and by (10), $\left|h_{n}(x)\right|=\left|h_{n}(x)-h_{n}(0)\right| \leqslant \operatorname{var}_{[0,1]} h_{n}=O(1)$ uniformly for all $x \in I$. Applying the theorems of Helly and Bray [8, pp. 29 and 31] we can extract from $h_{n}(x)$ a subsequence $h_{n_{p}}(x)$ which converges on I to a function $h(x) \in \operatorname{BV}(I)$ and we have for all $\psi \in C(I)$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} A_{n_{p}}(f, \psi)=\int_{I} \psi(x) d h(x) \tag{13}
\end{equation*}
$$

where $h(0)=h(1)=0$.
From (12) and (13)

$$
\begin{equation*}
\int_{I} f(x)\left(x(1-x) \psi^{\prime}(x)\right)^{\prime} d x=\int_{I} \psi(x) d h(x) \tag{14}
\end{equation*}
$$

To determine the solution f of this inhomogeneous problem we will first solve the homogeneous part

$$
\begin{equation*}
\int_{I} f(x)\left(x(1-x) \psi^{\prime}(x)\right)^{\prime} d x=0 \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{I} f(x)\left(x(1-x) \psi^{\prime \prime}(x)+(1-2 x) \psi^{\prime}(x)\right) d x=0 \tag{16}
\end{equation*}
$$

By partial integration of the second term we get

$$
\int_{I} f(x)(1-2 x) \psi^{\prime}(x) d x=\left.G(x) \psi^{\prime}(x)\right|_{0} ^{1}-\int_{I} G(x) \psi^{\prime \prime}(x) d x
$$

where $G(x)=\int_{o}^{x}(1-2 t) f(t) d t$. Because (15) holds for all $\psi \in C^{2}(I)$ we may choose $\psi(x)=x$ and then by (15), $G(1)$ becomes zero. Hence

$$
\int_{I}(f(x) x(1-x)-G(x)) \psi^{\prime \prime}(x) d x=0
$$

Thus we have for the absolutely continuous function G

$$
G(x) \doteq f(x) x(1-x)
$$

or

$$
G^{\prime}(x)=f(x)(1-2 x) \doteq f^{\prime}(x) x(1-x)+f(x)(1-2 x)
$$

and from this $f^{\prime}(x) \doteq 0$. The general solution for the homogeneous problem (15) is then $f(x) \doteq k(k \in \mathbb{R})$.

A short computation shows that for a function $h \in \operatorname{BV}(I)$, where $h(0)=$ $h(1)=0$,

$$
f(x)=\int_{\xi}^{x} \frac{h(t)}{t(1-t)} d t
$$

is a particular solution for the inhomogeneous problem (14). Altogether we have the general solution for (14)

$$
f(x)=k+\int_{\xi}^{x} \frac{h(t)}{t(1-t)} d t \quad(k \in \mathbb{R})
$$

This concludes the proof.
Now we shall prove (ii) \Rightarrow (i).
We must estimate $\left\|P_{n} f-f\right\|_{1}$ and may thereby omit constant terms, because

$$
\begin{equation*}
P_{n}(c)=c \quad(c \in \mathbb{R}) \tag{17}
\end{equation*}
$$

First we will rewrite $f \in S$ with $h \in \mathrm{BV}(I)$ and $h(0)=h(1)=0$

$$
\begin{aligned}
f(x) & =\int_{\xi}^{x} \frac{h(t)}{t(1-t)} d t \\
& =\int_{\xi}^{1} \frac{h(t)}{t} d t-\int_{x}^{1} \frac{h(t)}{t} d t+\int_{0}^{x} \frac{h(t)}{1-t} d t-\int_{0}^{\xi} \frac{h(t)}{1-t} d t .
\end{aligned}
$$

If $\xi \in(0,1)$ is fixed, we have (see text preceding (17)) with $h \in \operatorname{BV}(I)$, $h=h_{1}-h_{2}$ where h_{1}, h_{2} are nondecreasing functions on I,

$$
\begin{align*}
f(x)= & \int_{x}^{1} \frac{h_{2}(t)}{t} d t-\int_{x}^{1} \frac{h_{1}(t)}{t} d t \\
& +\int_{0}^{x} \frac{h_{1}(t)}{1-t} d t-\int_{0}^{x} \frac{h_{2}(t)}{1-t} d t \tag{18}
\end{align*}
$$

Let us now consider the function

$$
g(x)=\int_{x}^{1} \frac{h_{1}(t)}{t} d t-\int_{0}^{x} \frac{h_{1}(t)}{1-t} d t, \quad x \in(0,1)
$$

For h_{1} nondecreasing there is such a $c_{1} \in \mathbb{R}$ that for $m_{1}(t)=h_{1}(t)+c_{1}$ $(t \in I) m_{1}(0)=0$. Obviously m_{1} is nondecreasing and $m_{1}(t) \geqslant 0$ for $t \in I$. Hence

$$
g(x)=\int_{x}^{1} \frac{m_{1}(t)}{t} d t-\int_{0}^{x} \frac{m_{1}(t)}{1-t} d t+c_{1} \ln x+c_{1} \ln (1-x) .
$$

For

$$
g_{1}(x)=\int_{x}^{1} \frac{m_{1}(t)}{t} d t, \quad x \in(0,1]
$$

there is

$$
\begin{equation*}
g_{1}(x)-g_{1}\left(x_{0}\right) \leqslant m_{1}\left(x_{0}\right)\left(\ln x_{0}-\ln x\right), \quad x, x_{0} \in(0,1] \tag{19}
\end{equation*}
$$

and for

$$
\begin{gather*}
g_{2}(x)=-\int_{0}^{x} \frac{m_{1}(t)}{1-t} d t, \quad x \in[0,1) \\
g_{2}(x)-g_{2}\left(x_{0}\right) \leqslant m_{1}\left(x_{0}\right)\left(\ln (1-x)-\ln \left(1-x_{0}\right)\right), \quad x, x_{0} \in[0,1) . \tag{20}
\end{gather*}
$$

If x_{0} is fixed, we get from (19) after operating with P_{n} and then writing x for x_{0}

$$
P_{n}\left(g_{1}, x\right)-g_{1}(x) \leqslant m_{1}(x)\left(\ln x-P_{n}(\ln , x)\right)
$$

Hence

$$
\begin{aligned}
\left|P_{n}\left(g_{1}, x\right)-g_{1}(x)\right| \leqslant & -\left(P_{n}\left(g_{1}, x\right)-g_{1}(x)\right) \\
& +m_{1}(x)\left(\ln x-P_{n}(\ln , x)\right) \\
& +\left|m_{1}(x)\left(\ln x-P_{n}(\ln , x)\right)\right| .
\end{aligned}
$$

Since $\int_{I} P_{n}\left(g_{1}, x\right) d x=\int_{I} g_{1}(x) d x$ and $m_{1}(0)=0$ we have from (19)

$$
\begin{equation*}
\int_{I}\left|P_{n}\left(g_{1}, x\right)-g_{1}(x)\right| d x \leqslant 2 \operatorname{var}_{[0,1]} m_{1} \int_{I}\left|P_{n}(\ln , x)-\ln x\right| d x \tag{21}
\end{equation*}
$$

and from (20)

$$
\begin{equation*}
\int_{I}\left|P_{n}\left(g_{2}, x\right)-g_{2}(x)\right| d x \leqslant 2 \operatorname{var}_{[0,1]} m_{1} \int_{I}\left|\left(P_{n}\left(f_{1}, x\right)-f_{1}(x)\right)\right| d x \tag{22}
\end{equation*}
$$

where $f_{1}(x)=\ln (1-x)$.
If we now treat the terms of (18) with h_{2} in an analogous way we have a function $m_{2}(t)=h_{2}(t)+c_{2}\left(c_{2} \in \mathbb{R}\right)$ with $m_{2}(0)=0$ for $t \in I$.

Altogether we get from (18)

$$
\begin{aligned}
\int_{I}\left|P_{n}(f, x)-f(x)\right| d x \leqslant & k_{1}\left(\int_{I}\left|P_{n}(\ln , x)-\ln x\right| d x\right. \\
& \left.+\int_{I}\left|P_{n}\left(f_{1}, x\right)-f_{1}(x)\right| d x\right)
\end{aligned}
$$

where $f_{1}(x)=\ln (1-x)$ and

$$
h_{1}=2 \operatorname{var}_{[n, 1]} m_{1} \quad 2 \operatorname{var}_{[0,1]} m_{2} \cdots c_{1}: c_{2}
$$

Applying Lemma 2 and Lemma 3 the implication (ii) \Rightarrow (i) is shown.
Proof of (iii). We have $\lim _{n \rightarrow \infty} n P_{n} f \cdots f_{1}=0$ and thus for $\psi: E C^{2}(I)$

$$
\lim _{n \rightarrow \infty} 2 n \int_{I}\left(P_{n}(f, x)-f(x)\right) \psi(x) d x=0
$$

From this it follows (see proof of (i) \Rightarrow (ii)) that

$$
\int_{I} f(x)\left(x(1-x) \psi^{\prime}(x)\right)^{\prime} d x=0
$$

the homogeneous problem (15) with its general solution $f(x) \doteq k(k \subseteq \mathbb{R})$. This concludes the proof.

References

1. Z. Ditzian and C. P. May, L_{p} saturation and inverse theorems for modified Bernstein polynomials, Indiana Univ. Math. J. 25 (1976), 733-751.
2. A. O. Gelfond, "Differenzenrechnung," VEB Deutscher Verlag der Wissenschaften, Berlin, 1958.
3. W. Hoeffding, The L_{1} norm of the approximation error for Bernstein-type polynomials, J. Approximation Theory 4 (1971), 347-356.
4. L. V. Kantorovič, Sur certains développements suivant les polynômes de la forme de S. Bernstein, I, II, C. R. Acad. Sci. USSR A (1930), 563-568, 595-600.
5. G. G. Lorentz, Zur Theorie der Polynome von S. Bernstein, Mat. Sb. 2 (1937), 543-556.
6. V. Maier, "Güte- und Saturationsaussagen für die L_{1}-Approximation durch spezielle Folgen linearer positiver Operatoren," Dissertation, Universität Dortmund, 1976.
7. E. Voronowskaja, Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de M. Bernstein, C. R. Acad. Sci. URSS A (1932), 79-85.
8. D. V. Widder, "The Laplace Transform," Princeton Univ. Press, Princeton, N.J., 1946.
9. J. Wloka, "Funktionalanalysis und Anwendungen," Walter de Gruyter, Berlin, 1971.

[^0]: * This paper is part of the author's dissertation.

